Probability 1: Venn Diagrams

Table of Contents

1 Bronze 2
1.1 Without Set Notation. 2
1.2 With Set Notation 8
1.2.1 Independence/ Mutually Exclusive 13
1.2.2 Conditional 14
2 Silver 18
2.1 Without Set Notation. 18
2.2 With Set Notation 20
2.3 Independence 20
2.3.1.1 Conditional 22
2.3.1.2 With Algebra 25
3 Gold 28
3.1 With Set Notation 28
3.1.1 Independence/Mutually Exclusive 32
3.1.2 With Algebra 35
4 Diamond 41
4.1 With Set Notation 41
4.2 With Algebra 41
4.3 Bayes Theorem 49

This is a long worksheet to cater for students that want extra practice. If you want a shortcut, but still be sure to cover one of each type then follow the pink highlighted questions.

1 Bronze

1.1 Without Set Notation

1)

2)

3)
i.

$$
20 \%+30 \%=50 \%=0.50
$$

ii.

$30 \%=0.30$
iii.

$20 \%+30 \%+40 \%=90 \%=0.90$
iv.

v.

vi.

$30 \%+40 \%=70 \%=0.70$
vii.

$$
\frac{30 \%}{20 \%+30 \%}=\frac{30 \%}{50 \%}=\frac{3}{5}=0.6
$$

4)

We know all probabilities must add to one. The customer must either have a sandwich or a cake (i.e. there is no option to have neither so the outside is empty) so the inside of the Venn diagram must add to 1.

$$
\mathrm{P}(\text { sandwich })=0.72
$$

$P($ cake $)=0.45$
Way 1 :

1 = only a sandwich + only a cake + both
1 = (sandwich - both) + (cake - both $)+$ both
$1=$ sandwich + cake - both
$1=0.72+0.45-$ both
both $=0.17$

Way 2:

Only a sandwich $=1$ - cake
Only a sandwich $=1-0.45=0.55$
Only a cake $=1$ - sandwich
Only a cake $=1-0.72=0.28$

5)

6)

i. $\frac{\text { gets cancer and is smoker }}{\text { total smokers }}=\frac{0.05}{0.2+0.05}=\frac{0.05}{0.25}=\frac{1}{5}=0.2$
ii. $\frac{\text { does not get cancer and is a smoker }}{\text { total smokers }}=\frac{0.2}{0.2+0.05}=\frac{0.2}{0.25}=\frac{4}{5}=0.8$
iii. $\frac{\text { non-smokers who get cancer }}{\text { total non-smokers }}=\frac{0.03}{0.03+0.72}=\frac{0.03}{0.75}=0.04$
iv. $\frac{\text { does not get cancer and is non-smoker }}{\text { total non-smokers }}=\frac{0.72}{0.03+0.72}=\frac{0.72}{0.75}=0.96$
7)

Total must add to 60 So $60=12+8+14+3+7+4+k$ So $k=5$		
i.		Probability they like Italian $\frac{8+14+7+4}{60}=\frac{33}{60}=\frac{11}{20}$
ii.		Probability they like only Italian $\frac{14}{60}=\frac{7}{30}$

8)

Swimmers who swim none of these events $=25-3-2-2-2-1-0-4=25-14=11$

i.
$\mathrm{P}($ swims only freestyle $)=\frac{3}{25}$

$\mathrm{P}($ swims exactly 2 events $)=\frac{2+2+0}{25}=\frac{4}{25}$
iii.

$\mathrm{P}($ swims freestyle and backstroke $)=\frac{2+1}{25}=\frac{3}{25}$
$P($ swims backstroke given swims freestyle)

$$
=\frac{\text { swims backstroke and freestyle }}{\text { swims freestyle }}=\frac{2+1}{3+2+1+2}=\frac{3}{8}
$$

vi.

P (does not swim freestyle, backstroke or breaststroke) $=\frac{11}{25}$

1.2 With Set Notation
 9)

i. $P(A)$	iii. $P\left(A^{\prime}\right)$
ii. $P(B)$	iv. $P\left(B^{\prime}\right)$

10)

	Step 1	Step 2	Explained	Answer
$\boldsymbol{P}(\boldsymbol{A} \cup \boldsymbol{B})$	$P(A)=$ Everything in A		This is a U so we shade everything that is shaded in each diagram i.e. we merge/combine the shading in the diagrams together	
$\boldsymbol{P}(\boldsymbol{A} \cap \boldsymbol{B})$	$P(A)=$ Everything in A	$P(B)=$ Everything in B	This is a \cap so we shade everything that is shaded in BOTH diagrams i.e. the double shading common to both diagrams	
$\boldsymbol{P}\left(\boldsymbol{A}^{\prime} \cap \boldsymbol{B}^{\prime}\right)$	$P\left(A^{\prime}\right)=$ Everything NOT in A		This is a \cap so we shade everything that is shaded in BOTH diagrams i.e. the double shading common to both diagrams	
$\boldsymbol{P}\left(\boldsymbol{A}^{\prime} \cap \boldsymbol{B}\right)$			This is a \cap so we shade everything that is shaded in BOTH diagrams i.e. the double shading common to both diagrams	
$\boldsymbol{P}\left(\boldsymbol{A} \cap \boldsymbol{B}^{\prime}\right)$	$P(A)=$ Everything in A		This is a \cap so we shade everything that is shaded in BOTH diagrams i.e. the double shading common to both diagrams	

\boldsymbol{P}
$P(A \cup B)^{\prime}:$
Shade $P(A \cup B)$ first
11)

Way 1: use a combination of a Venn diagram and formulae (if necessary)
$P(A)=0.35$
$P(B)=0.45$
$P(A \cap B)=0.13$

simplify

Way 2: Use the symmetries of a Venn diagram

We are told $P(A)=0.35$. This means the shaded region to the right must represent 0.35

We are told $P(B)=0.45$. This means the shaded region to the right must represent 0.45

We are told $P(A \cap B)=0.13$. This means the shaded region to the right must represent 0.13

$P(A \cup B)$ is everything inside the circles

$P(A \cup B)=0.22+0.13+0.32=0.67$
$P\left(A \cap B^{\prime}\right)=0.22$
Note: We could have found $P(A \cup B)$ with just using the addition formula from the beginning without any Venn diagram as this question is easy:
Addition formula: $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
Let's plug in everything we know
$P(A \cup B)=0.35+0.45-0.13$
$P(A \cup B)=0.67$

So, the remaining pink part must be $0.45-0.13=0.32$

We also can find the remaining blue part
$0.35-0.13=0.22$

We can now we can fill in the all the pieces of the Venn diagram
$1-0.32-0.13-0.22=0.33$
Reading off the diagram:

$P(A \cup B)=0.22+0.13+$
$0.32=0.67$
$P\left(A \cap B^{\prime}\right)=0.22$
12)

i.

$$
\begin{gathered}
P(A)=0.38 \\
P(B)=0.42 \\
P(A \cup B)=0.56
\end{gathered}
$$

We can't fill into the Venn diagram yet
Let's use the addition formula first to find the intersection $P(A \cap B)$

$$
\begin{gathered}
P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
0.56=0.38+0.42-P(A \cap B) \\
\text { Re-arrange for } P(A \cap B) \\
P(A \cap B)=0.38+0.42-0.56=0.24
\end{gathered}
$$

Now we can fill into the Venn diagram

ii.

$$
P\left(A^{\prime} \cap B\right)=0.18
$$

iii.

$P\left(A \cap B^{\prime}\right)=0.14$
iv.

$P\left(A^{\prime} \cup B\right)=0.18+0.24+0.44=0.8$
Note: Could also have used the addition formula instead and adapted it by replacing A with A^{\prime}

$$
P\left(A^{\prime} \cup B\right)=P\left(A^{\prime}\right)+P(B)-P\left(A^{\prime} \cap B\right)
$$

$$
=(0.18+0.44)+(0.24+0.18)-0.18=0.86
$$

v.
$P(A \cap B):$

Remember the ' means everything NOT in $A \cap B$
$P(A \cap B)^{\prime}=0.14+0.18+0.44=0.76$
Note: Could also have used
$P(A \cap B)^{\prime}=1-P(A \cap B)=1-0.24=0.76$
$P(A \cap B)^{\prime}:$

14)
i.

$$
\begin{gathered}
P(A)=\frac{11}{36} \\
P(B)=\frac{1}{6}
\end{gathered}
$$

$P(A \cup B)^{\prime}=\frac{21}{36}$

We can't fill into the Venn diagram yet, but we can find out what $P(A \cup B)$ is below by using $P(A \cup B)^{\prime}$ and the fact that probabilities add to 1

$P(A \cup B)^{\prime}=1-P(A \cup B)$
$P(A \cup B)=1-\frac{21}{36}=\frac{15}{36}$
Let's use the addition formula first to find the intersection

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

$$
\begin{gathered}
\frac{15}{36}=\frac{11}{36}+\frac{1}{6}-P(A \cap B) \\
P(A \cap B)=\frac{11}{36}+\frac{1}{6}-\frac{15}{36}=\frac{2}{36}=\frac{1}{18}
\end{gathered}
$$

So, we know $P(A)=\frac{11}{36}, P(B)=\frac{1}{6}, P(A \cup B)=\frac{15}{36}, P(A \cap B)=\frac{1}{18}$
we can fill in the Venn diagram now

Simplify

ii. $P\left(A^{\prime} \cap B\right)=\frac{1}{9}$
iii. $P\left(A \cap B^{\prime}\right)=\frac{1}{4}$

Venn Diagrams

$$
\text { iv. } P\left(A^{\prime} \cup B\right)=\frac{1}{18}+\frac{1}{9}+\frac{21}{36}=\frac{3}{4}
$$

Note: Could also have used the addition formula instead and adapted it by replacing A with A^{\prime} $P\left(A^{\prime} \cup B\right)=P\left(A^{\prime}\right)+P(B)-P\left(A^{\prime} \cap B\right)=\left(\frac{1}{9}+\frac{21}{36}\right)+\left(\frac{1}{18}+\frac{1}{9}\right)-\frac{1}{9}=\frac{3}{4}$

1.2.1 Independence/ Mutually Exclusive

15)

Way 1: Use a combination of a Venn diagram and formulae

$$
P(A)=0.4, P(B)=0.55 \text { and } P(A \cup B)=0.7
$$

We can't fill into the Venn diagram yet
Let's use the addition formula first to find the
intersection: $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$0.7=0.40+0.55-P(A \cap B)$
$P(A \cap B)=0.25$
let's update the Venn diagram with $P(A \cap B)=0.25$

Now we can fill in the rest of the Venn diagram $P(A)=0.40$ $P(B)=0.55$

Let's simplify the numbers
 $P(A \cap B)=0.25, P\left(A \cap B^{\prime}\right)=0.15$

Way 2: Use the symmetries of Venn diagram
we are told $P(A \cup B)=0.7$. This means the shaded region to the right must represent 0.7
we are also told $P(A)=0.4$. This means the shaded region to the right must represent 0.4

so, the remaining part must be $0.7-0.4=0.3$

we are also told $P(B)=0.55$. This means the shaded region to the right must represent 0.55

So, we can now we can fill in the all the pieces of the Venn diagram $0.55-0.3=0.25$

$0.4-0.25=0.15$
$1-0.3-0.25-0.15=0.3$
Reading off the diagram:
$P(A \cap B)=0.25, P\left(A \cap B^{\prime}\right)=0.15$

Way 3: Use the symmetries of Venn diagram (same method as way 2 , just a different order)
we are also told $P(A)=0.4$. This means the shaded region to the right must represent 0.4
we are also told $P(B)=0.55$. This means the shaded region to the right must represent 0.55

we are told $P(A \cup B)=0.7$. This means the shaded region to the right must represent 0.7

The red and purple added together double counts the middle region. We can find this region by subtracting the red and purple regions from the blue region
$0.7-0.40-0.55=0.25$

So, we can now we can fill in the all the pieces of the Venn diagram
$0.55-0.25=0.2$
$0.4-0.25=0.15$
$1-0.3-0.25-0.15=0.3$

Reading off the diagram:
$P(A \cap B)=0.25, P\left(A \cap B^{\prime}\right)=0.15$

A and B are independent if $P(A \cap B)=P(A) \times P(B)$
Let's find each individual part and see whether the above result is true

$$
\begin{gathered}
P(A \cap B)=0.25 \\
P(A)=0.40 \\
P(B)=0.55 \\
P(A) \times P(B)=0.40(0.55)=0.22 \\
P(A \cap B) \neq P(A) \times P(B) \text { since } 0.25 \neq 0.22 \\
\text { Therefore, the events are not independent }
\end{gathered}
$$

16)

A and B are independent so we can use a formula for this: $P(A \cap B)=P(A) \times P(B)=0.4 \times 0.25=0.1$
So, we have
$P(A)=0.4$
$P(B)=0.25$
$P(A \cap B)=0.1$

simplify

Way 1: Read off Venn Diagram

i. $P(A \cup B)$ is the inside of the circles
$P(A \cup B)=0.3+0.1+0.1=0.55$
ii. $P(A \cap B)$ is the middle part common to both circles
$P(A \cap B)=0.1$
iii. $P\left(A \cap B^{\prime}\right)$ means in A , but not in B , so this is the half moon/crescent on the left

$$
P\left(A \cap B^{\prime}\right)=0.3
$$

iv. $P\left(A^{\prime} \cap B^{\prime}\right)$ is the outside region
$P\left(A^{\prime} \cap B^{\prime}\right)=0.45$
v. $P\left(A \cup B^{\prime}\right)=0.3+0.1+0.45=0.85$

Note: Could also have used the addition formula instead and adapted it by replacing B with B^{\prime}
$P\left(A \cup B^{\prime}\right)=P(A)+P\left(B^{\prime}\right)-P\left(A \cap B^{\prime}\right)=(0.3+0.1)+(0.3+0.45)-0.3=0.85$

Way 2: Use Formulae

i. $P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.4+0.25-0.1=0.55$
ii. $P(A \cap B)=P(A) \times P(B)=0.4 \times 0.25=0.1$

Note: we could only multiply since the events are independent
iii. $P\left(A \cap B^{\prime}\right)=P(A) \times(1-P(B))=0.4 \times(1-0.25)=0.4 \times 0.75=0.3$

Note: we could only multiply since the events are independent
iv. $P\left(A^{\prime} \cap B^{\prime}\right)=(1-P(A)) \times(1-P(B))=(1-0.4) \times(1-0.25)=0.6 \times 0.75=0.45$

Note: we could only multiply since the events are independent
v. $P\left(A \cup B^{\prime}\right)=P(A)+P\left(B^{\prime}\right)-P\left(A \cap B^{\prime}\right)=0.4+0.75-0.3=0.85$
17)

$$
\begin{array}{|l}
\text { i. } \mathrm{A} \text { and } \mathrm{B} \text { are independent so } P(A \cap B)=P(A) \times P(B)=0.3 \times 0.5=0.15 \\
\text { ii. } P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.3+0.5-(0.3 \times 0.5)=0.3+0.5-0.15=0.65 \\
\text { iii. } P(A \cap B) \neq 0 \text { so events } \mathrm{A} \text { and } \mathrm{B} \text { are not mutually exclusive }
\end{array}
$$

1.2.2 Conditional

18)

We don't need to draw a Venn diagram here as we have everything we need given in the question

$$
\text { Use the formula } P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

$$
P(B \mid A)=\frac{0.12}{0.2}=\frac{3}{5}=0.6
$$

19)

Way 1: Use a combination of Venn diagram and formulae

$$
\begin{gathered}
\mathrm{P}(\mathrm{~A})=\frac{2}{3} \\
\mathrm{P}(\mathrm{~B})=\frac{1}{2} \\
\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\frac{1}{4}
\end{gathered}
$$

simplify

$$
P(A \cup B) \text { is the inside of the circles }
$$

$$
P(A \cup B)=\frac{5}{12}+\frac{1}{4}+\frac{1}{4}=\frac{11}{12}
$$

$P(A \cap B)^{\prime}$ is the outside region

$$
P(A \cap B)^{\prime}=\frac{1}{12}
$$

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{\frac{1}{4}}{\frac{2}{3}}=\frac{3}{8}
$$

Way 2: Use formulae only

$$
\begin{gathered}
P(A \cup B)=P(A)+P(B)-P(A \cap B)=\frac{2}{3}+\frac{1}{2}-\frac{1}{4}=\frac{11}{12} \\
P(A \cap B)^{\prime}=1-P(A \cap B)=1-\frac{11}{12}=\frac{1}{12} \\
P(A \mid B) \text { has a formula } \\
\frac{P(A \cap B)}{P(A)}=\frac{\frac{1}{4}}{2}=\frac{3}{8}
\end{gathered}
$$

20)

| $P(C)=06$ |
| ---: | :--- |
| $P(D)=0.3$ |

We can't fill into the Venn diagram yet as we don't have enough information.

Let's use the addition formula
$P(C \cup D)=P(C)+P(D)-P(C \cap D)$

$$
0.8=0.6+0.3-P(C \cap D)
$$

$$
P(C \cap D)=0.1
$$

So, the Venn Diagram looks like

Simplify

$$
\text { So } P\left(D \mid C^{\prime}\right)=\frac{P\left(D \cap C^{\prime}\right)}{P\left(C^{\prime}\right)}=\frac{0.2}{0.4}=\frac{1}{2}=0.5
$$

21)

2 Silver

2.1 Without Set Notation

22)

23)

xii. $\frac{\text { likes A or B or both AND doesn't like A }}{\text { likes A or B or both }}=\frac{\text { likes B and doesn't like A }}{\text { likes A or B or both }}=\frac{0+1}{1+2+0+90+3+1}=\frac{1}{97}$
xiii. A and B are independent if the probability that a person likes A multiplied by the probability a person likes B equals the probability that a person likes A and B.
probability a person likes $A=\frac{90+1+2+3}{100}=\frac{96}{100}$
probability a person likes $B=\frac{90+0+2+1}{100}=\frac{93}{100}$
probability a person likes A and $B=\frac{90+2}{100}=\frac{92}{100}$
$\frac{96}{100} \times \frac{93}{100} \neq \frac{92}{100}$
So, A and B are not independent.

2.2 With Set Notation

2.3 Independence

24)

Way 1: Use a combination of Venn diagram and formulae

i.
ii.

$$
P(B)=0.2+0.6=0.8
$$

Given A and B Independent:
$P(A \cap B)=P(A) \times P(B)$
$0.2=P(A) \times(0.6+0.2)$
$P(A)=\frac{0.2}{0.8}=0.25$
Let's update the Venn diagram

$P(A \cup B)=0.05+0.2+0.6=0.85$
Way 2: use formulae only
i. $P(B)=P(A \cap B)+P\left(A^{\prime} \cap B\right)=0.2+0.6=0.8$
ii. A and B are independent so $P(A \cap B)=P(A) \times P(B)$
so $0.2=P(A) \times 0.8$
$P(A)=\frac{0.2}{0.8}=0.25$
$P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.25+0.8-0.2=0.85$
25)

Way 1: Use a combination of Venn diagram and formulae
$\mathrm{P}(\mathrm{A} \cap B)=0.3$
$\mathrm{P}\left(\mathrm{A} \cap B^{\prime}\right)=0.3$

$$
\text { We can see that } P(A)=0.3+0.3=0.6
$$

$$
P(A)=0.6
$$

Given A and B Independent: We can user the independence formula
$P(A \cap B)=P(A) \times P(B)$
$P(A \cap B)=0.6 P(B)$
$0.3=0.6 P(B)$
$P(B)=\frac{0.3}{0.6}=0.5$

Let's update the Venn diagram

$\mathrm{P}(\mathrm{A} \cup B)=0.3+0.3+0.2=0.8$

Way 2: use formulae only
A and B are independent so $P(A \cap B)=P(A) \times P(B)$ and $P\left(A \cap B^{\prime}\right)=P(A) \times P\left(B^{\prime}\right)=P(A) \times(1-P(B))$ $0.3=P(A) \times P(B)$
$0.3=P(A) \times(1-P(B))$
Now we have a pair of simultaneous equations
We can let $P(A)=x, P(B)=y$ so it looks more familiar.

$$
\begin{gathered}
\text { (1) } 0.3=x y \\
\text { (2) } 0.3=x(1-y) \\
\frac{(1)}{(2)} 1=\frac{y}{1-y} \\
y-1=y \\
2 y=1 \\
y=\frac{1}{2}=0.5=P(B)
\end{gathered}
$$

Substitute this back into equation (1)

$$
\text { (1) } x=P(A)=\frac{0.3}{y}=\frac{0.3}{0.5}=\frac{3}{5}=0.6
$$

So $P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.6+0.5-0.3=0.8$

2.3.1.1 Conditional

26)

Way 1: Use a combination of Venn diagram and formulae

$$
\begin{gathered}
P(A)=\frac{2}{5} \\
P(B)=\frac{11}{20}
\end{gathered}
$$

We don't have enough to fill into the Venn diagram yet

$$
\begin{gathered}
\text { Given } \mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{2}{11} \\
\text { We can use the conditional formula } P(A \mid B)=\frac{P(A \cap B)}{P(B)} \\
\frac{P(A \cap B)}{\frac{11}{20}}=\frac{2}{11} \\
P(A \cap B)=\frac{2}{11} \times \frac{11}{20}=\frac{1}{10}
\end{gathered}
$$

Way 2: Use formulae only

$$
\begin{gathered}
\text { Given } \mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{2}{11} \\
\text { Let's use the conditional formula } P(A \mid B)=\frac{P(A \cap B)}{P(B)} \\
\frac{2}{11}=\frac{P(A \cap B)}{\frac{11}{20}} \\
P(A \cap B)=\frac{2}{11} \times \frac{11}{20}=\frac{1}{10} \\
P(A \cup B)=P(A)+P(B)-P(A \cap B)=\frac{2}{5}+\frac{11}{20}-\frac{1}{10}=\frac{17}{20} \\
P(A \mid B)=\frac{2}{11} \text { but } P(A)=\frac{2}{5} \frac{2}{11} \neq \frac{2}{5} \text { so } \mathrm{A} \text { and } \mathrm{B} \text { are not independent. }
\end{gathered}
$$

Way 1: Use a combination of Venn diagram and formulae

$$
\begin{gathered}
\mathrm{P}(\mathrm{~B})=\frac{1}{2} \\
\mathrm{P}(\mathrm{~A} \cup B)=\frac{13}{20}
\end{gathered}
$$

We don't have enough to fill into the Venn diagram yet
Given $P(A \mid B)=\frac{2}{5}$
We can use the conditional formula $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$

$$
\begin{gathered}
\frac{P(A \cap B)}{\frac{1}{2}}=\frac{2}{5} \\
P(A \cap B)=\frac{2}{5} \times \frac{1}{2}=\frac{1}{5}
\end{gathered}
$$

We can now fill in the middle part

$$
P(A)=\frac{13}{20}-\frac{3}{10}=\frac{7}{20}
$$

Let's use the conditional formula to find $P(B \mid A)$

$$
\begin{gathered}
P(B \mid A)=\frac{P(B \cap A)}{P(A)}=\frac{\frac{1}{5}}{\frac{7}{20}}=\frac{4}{7} \\
\mathrm{P}\left(\mathrm{~A}^{\prime} \cap B\right)=\frac{3}{10}
\end{gathered}
$$

Way 2: Use formulae only

$$
\begin{gathered}
\text { Given } \mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{2}{5} \\
\text { Let's use the conditional formula } P(A \mid B)=\frac{P(A \cap B)}{P(B)} \\
\frac{2}{5}=\frac{P(A \cap B)}{\frac{1}{2}} \\
P(A \cap B)=\frac{2}{5} \times \frac{1}{2}=\frac{1}{5} \\
P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
\frac{13}{20}=P(A)+\frac{1}{2}-\frac{1}{5} \\
P(A)=\frac{13}{20}+\frac{1}{5}-\frac{1}{2}=\frac{7}{20}
\end{gathered}
$$

$$
\begin{gathered}
P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{\frac{1}{5}}{\frac{7}{20}}=\frac{4}{7} \\
P(B)=P(A \cap B)+P\left(A^{\prime} \cap B\right) \\
\frac{1}{2}=\frac{1}{5}+P\left(A^{\prime} \cap B\right) \\
P\left(A^{\prime} \cap B\right)=\frac{1}{2}-\frac{1}{5}=\frac{3}{10}
\end{gathered}
$$

28)

Way 1: Use a combination of Venn diagram and formulae

$$
\begin{gathered}
\mathrm{P}(\mathrm{~B})=\frac{1}{2} \\
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{2}{5} \\
\mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=\frac{13}{}
\end{gathered}
$$

We don't have enough to fill in the whole Venn diagram yet

Let's use the conditional formula

$$
\begin{gathered}
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \\
\frac{2}{5}=\frac{P(A \cap B)}{\frac{1}{2}} \\
P(A \cap B)=\frac{2}{5} \times \frac{1}{2}=\frac{1}{5}
\end{gathered}
$$

Now we can fill in the rest of the Venn diagram

$$
\begin{gathered}
P(A)=\frac{3}{20}+\frac{1}{5}=\frac{7}{20} \\
P\left(A \mid B^{\prime}\right)=\frac{P\left(A \cap B^{\prime}\right)}{P\left(B^{\prime}\right)}=\frac{\frac{3}{20}}{\frac{3}{20}+\frac{7}{20}}=\frac{3}{10} \\
P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{\frac{1}{5}}{\frac{7}{20}}=\frac{4}{7}
\end{gathered}
$$

$$
P\left(A^{\prime} \cup B\right)=\frac{3}{10}+\frac{7}{20}+\frac{1}{5}=\frac{17}{20}
$$

Note: Could also have used the addition formula instead and adapted it by replacing A with A^{\prime}

$$
P\left(A^{\prime} \cup B\right)=P\left(A^{\prime}\right)+P(B)-P\left(A^{\prime} \cap B\right)=\left(\frac{3}{10}+\frac{7}{20}\right)+\left(\frac{1}{5}+\frac{3}{10}\right)-\frac{3}{10}=\frac{17}{20}
$$

Way 2: Use formulae only

$$
\begin{gathered}
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \\
\frac{2}{5}=\frac{P(A \cap B)}{\frac{1}{2}} \\
P(A \cap B)=\frac{2}{5} \times \frac{1}{2}=\frac{1}{5} \\
P(B)=P(A \cap B)+P\left(A^{\prime} \cap B\right) \\
\frac{1}{2}=\frac{1}{5}+P\left(A^{\prime} \cap B\right) \\
P\left(A^{\prime} \cap B\right)=\frac{1}{2}-\frac{1}{5}=\frac{3}{10} \\
P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
\frac{13}{20}=P(A)+\frac{1}{2}-\frac{1}{5} \\
P(A)=\frac{13}{20}-\frac{1}{2}+\frac{1}{5}=\frac{7}{20} \\
P\left(A \mid B^{\prime}\right)=\frac{P\left(A \cap B^{\prime}\right)}{P\left(B^{\prime}\right)}=\frac{P(A)-P(A \cap B)}{1-P(B)}=\frac{\frac{7}{20}-\frac{1}{5}}{1-\frac{1}{2}}=\frac{3}{\frac{1}{2}}=\frac{3}{10} \\
P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{\frac{1}{5}}{\frac{7}{20}}=\frac{4}{7} \\
P\left(A^{\prime} \cup B\right)=P\left(A^{\prime}\right)+P(B)-P\left(A^{\prime} \cap B\right)=(1-P(A))+P(B)-P\left(A^{\prime} \cap B\right) \\
=\left(1-\frac{7}{20}\right)+\frac{1}{2}-\frac{3}{10}=\frac{13}{20}+\frac{1}{2}-\frac{3}{10}=\frac{17}{20}
\end{gathered}
$$

2.3.1.2 With Algebra

29)

Way 1: Use a combination of Venn diagram and formulae

i.
$\mathrm{P}(\mathrm{A})=k$
$\mathrm{P}(\mathrm{B})=3 k$
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=k^{2}$
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=0.5$

We can build an equation based on knowing the blue shaded region is 0.5

$$
\begin{gathered}
k-k^{2}+k^{2}+3 k-k^{2}=\frac{1}{2} \\
k^{2}-4 k+\frac{1}{2}=0 \\
2 k^{2}-8 k+1=0
\end{gathered}
$$

Using calculator/quadratic formula, $k=3.871$ or $k=0.129$
Since k represents a probability, $k \leq 1$ so $k=0.129$ is the only solution
ii.

$$
P\left(A^{\prime} \cap B\right)=3 k-k^{2}=3(0.129)-0.129^{2}=0.370
$$

Way 2: Use formulae only

i.

$$
\begin{gathered}
P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
\frac{1}{2}=k+3 k-k^{2} \\
2 k^{2}-8 k+1=0
\end{gathered}
$$

Using calculator/ quadratic formula, $k=3.871$ or $k=0.129$
Since k represents a probability, $k \leq 1$ so $k=0.129$ is the only solution
ii.

$$
P(B)=P(A \cap B)+P\left(A^{\prime} \cap B\right)
$$

$$
P\left(A^{\prime} \cap B\right)=P(B)-P(A \cap B)=3 k-k^{2}=3 \times 0.129-0.129^{2}=0.370
$$

30)

Way 1: Use a combination of Venn diagram and formulae

$$
\mathrm{P}(\mathrm{C})=2 k
$$

$P(D)=3 k^{2}$

Not enough info to fill in the Venn diagram yet
We can use the fact that C and D are independent: $P(C \cap D)=P(C) \times P(D)$
$P(C \cap D)=2 k \times 3 k^{2}=6 k^{3}$

Now we can fill into the Venn diagram
i. $6 k^{3}$
ii. $\quad 6 k^{3}=0.162$
$k^{3}=0.027$
$k=\sqrt[3]{0.027}=0.3$
iii. $P\left(C^{\prime} \mid D\right)=\frac{P\left(C^{\prime} \cap D\right)}{P(D)}=\frac{3 k^{2}-6 k^{3}}{3 k^{2}}=\frac{1-2 k}{1}=\frac{1-0.6}{1}=0.4$

Way 2: Use formulae only

i. C and D are independent so $P(C \cap D)=P(C) \times P(D)$

$$
P(C \cap D)=2 k \times 3 k^{2}=6 k^{3}
$$

ii. $0.162=6 k^{3}$

$$
k^{3}=\frac{0.162}{6} \text { so } k=\sqrt[3]{\frac{0.162}{6}}=0.3
$$

iii. $P\left(C^{\prime} \mid D\right)=\frac{P\left(C^{\prime} \cap D\right)}{P(D)}=\frac{P(D)-P(C \cap D)}{P(D)}=\frac{3 k^{2}-6 k^{3}}{3 k^{2}}=\frac{1-2 k}{1}=\frac{1-0.6}{1}=0.4$

Way 1: Use a combination of Venn diagram and formulae
$\mathrm{P}(\mathrm{A})=x$
$P(B)=y$

We don't have enough to fill into the Venn diagram yet
Given that events A and B are independent so let's use the formula $\mathrm{P}(A \cap B)=P(A) \times P(B)$

$$
\mathrm{P}(A \cap B)=P(A) \times P(B)=x y
$$

Now we can fill into the Venn diagram

i. $P(A \cap B)=P(A) \times P(B)=x y$
ii. $P(A \cup B)=x-x y+x y+y-x y=x+y-x y$
iii. $P\left(A \cup B^{\prime}\right)=x-x y+x y+1-x-y+x y=1-y+x y$

Note: Could also have used the addition formula instead and adapted it by replacing B with B^{\prime}
$P\left(A \cup B^{\prime}\right)=P(A)+P\left(B^{\prime}\right)-P\left(A \cap B^{\prime}\right)$

$$
\begin{aligned}
& =(x-x y+x y)+(x-x y+1-x-y+x y)-(x-x y) \\
& =x+1-y-x+x y \\
& =1-y+x y
\end{aligned}
$$

Way 2: Use formulae only
i. $P(A \cap B)=P(A) \times P(B)=x y$
ii. $P(A \cup B)=P(A)+P(B)-P(A \cap B)=x+y-x y$
iii. $P\left(A \cup B^{\prime}\right)=P(A)+P\left(B^{\prime}\right)-P\left(A \cap B^{\prime}\right)$

$$
\begin{aligned}
& =P(A)+(1-P(B))-(P(A) \times(1-P(B))) \\
& =x+(1-y)-x(1-y)=x+1-y-x+x y=1-y+x y
\end{aligned}
$$

3 Gold

3.1 With Set Notation

32)

Now think about $\cap C$ which means we want the parts of this that are also in C

vi. $P\left(\left(A \cap B \cap C^{\prime}\right)^{\prime}\right)$
start with the bracket, we want everything that's in A and B but not in C

Now deal with the ${ }^{\prime}$, so we want to shade the opposite of what we just found

33)
i. $\quad P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.2+0.1}{0.2+0.1+0.12+0.08}=\frac{0.3}{0.5}=0.6$
ii. $\quad P\left(C \mid A^{\prime}\right)=\frac{P\left(C \cap A^{\prime}\right)}{P\left(A^{\prime}\right)}=\frac{0.1+0.08}{0.12+0.08+0.1+0.15}=\frac{0.18}{0.45}=0.4$
iii. $\quad P(B \mid A \cup B)=\frac{P(B \cap(A \cup B))}{P(A \cup B)}$

Let's look at the numerator $P(B \cap(A \cup B))$
Shade $P(A \cup B)$ first

Now choose the parts that are also in B

Let's look at the denominator $\mathrm{P}\left(C^{\prime}\right)$

$$
P\left((A \cap B) \mid C^{\prime}\right)=\frac{P\left(A \cap B \cap C^{\prime}\right)}{P\left(C^{\prime}\right)}=\frac{0.2}{0.2+0.2+0.12+0.15}=\frac{0.2}{0.67}=0.299
$$

iii. $P\left(C \mid A^{\prime} \cup B^{\prime}\right)=P\left(C \mid A^{\prime} \cup B^{\prime}\right)=\frac{P\left(C \cap\left(A^{\prime} \cup B^{\prime}\right)\right)}{P\left(A^{\prime} \cup B^{\prime}\right)}$

Let's look at the numerator $P\left(C \cap\left(A^{\prime} \cup B^{\prime}\right)\right)$
Shade $P\left(A^{\prime} \cup B^{\prime}\right)$ first

Now choose the parts that are also in C

Let's look at the denominator $P\left(A^{\prime} \cup B^{\prime}\right)$

$$
\frac{P\left(C \cap\left(A^{\prime} \cup B^{\prime}\right)\right)}{P\left(A^{\prime} \cup B^{\prime}\right)}=\frac{0.05+0.08+0.1}{0.2+0.05+0.08+0.12+0.1+0.15}=\frac{0.23}{0.7}=0.329
$$

3.1.1 Independence/Mutually Exclusive
34)

> i.
> $P(A)=0.25$
> $P(B)=0.4$
> $P(C)=0.45$
> $P(A \cap B \cap C)=0.1$
> $A \cap B^{\prime} \cap C=\emptyset$
> $P(A \cap B)=P(A) P(B)=0.25(0.4)=0.1$
> $P(B \cap C)=P(B) P(C)=0.4(0.45)=0.18$

We can simplify the numbers

ii.

$$
P\left(A^{\prime} \cap\left(B^{\prime} \cup C\right)\right)
$$

Shade $P\left(B^{\prime} \cup C\right)$ first - left diagram
Now choose the parts that are also NOT in A - right diagram

$$
0.08+0.27+0.18=0.53
$$

iii.

$$
P(A \cup B) \cap C)
$$

Shade $P(A \cup B)$ first - left diagram
Now choose the bits that are also in C - right diagram

$$
0+0.1+0.08=0.18
$$

iv.

If independent $P\left(A^{\prime} \cap C\right)=P\left(A^{\prime}\right) P(C)$
$P\left(A^{\prime}\right)=1-0.25=0.75$ (since A was given in question)
$P(C)=0.45$ (since C was given in question)

$$
\begin{gathered}
P\left(A^{\prime} \cap C\right)=0.27+0.08=0.35 \\
P\left(A^{\prime}\right) P(C)=0.75(0.45)=0.3375 \\
0.35 \neq 0.3375 \\
\text { So not independent }
\end{gathered}
$$

$P(A)=0.55$
$P(B)=0.35$
$P(C)=0.4$
$P(A \cap C)=0.2$
$P(A \cap B)=0$
A and B are mutually exclusive so $P(A \cap B)=0$
ii. $P(B) P(C)=0.35(0.4)=0.14$

Venn Diagrams

3.1.2 With Algebra

36)

This is hard since can't fill into the formula in order fill out the rest of hte Venn diagram. So, we must use the symmetries below instead.
i. and ii.

iii.

We still don't have enough info to fill all numbers into the Venn diagram. To get around this, lets we call the intersection part x

$$
\begin{gathered}
\mathrm{P}(\mathrm{AIB})=0.6 \\
\frac{x}{x+0.22}=0.6 \\
x=0.33
\end{gathered}
$$

Note: Or you can use that $P\left(A^{\prime} \mid B\right)=\frac{\mathrm{p}\left(A^{\prime} \cap \mathrm{B}\right)}{\mathrm{P}(\mathrm{B})}$

$$
\begin{gathered}
1-0.6=\frac{0.22}{P(B)} \\
P(B)=0.55 \\
P(A \cap B)=0.55-0.33=0.22
\end{gathered}
$$

iv.
$P(A)=0.6, P(B)=0.22+0.33=0.55$
$P(A \cap B)=0.33$
$0.33=0.6(0.55)$ therefore independent
37)

A and B are independent: we can use the formula $P(A \cap B)=P(A) P(B)$
This doesn't help since we don't have enough info to fill in
We can also use the addition formula:
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$ can be updated as
$P(A \cup B)=P(A)+P(B)-P(A) P(B)$ since independent
$\frac{2}{3}=\frac{1}{4}+P(B)-\frac{1}{4} P(B)$
Solve for $P(B)$. Call if x if it helps look a bit more familiar to the types of equations you're used to solving.

$$
\begin{gathered}
\frac{2}{3}-\frac{1}{4}=x-\frac{1}{4} x \\
\frac{5}{12}=\frac{3}{4} x \\
x=\frac{\frac{5}{12}}{\frac{3}{4}}=\frac{5}{9}
\end{gathered}
$$

$$
\text { So } P(B)=x=\frac{5}{9}
$$

Now we have enough info to fill into the Venn diagram

$$
\begin{gathered}
\mathrm{P}(\mathrm{~A})=\frac{1}{4} \\
P(A \cup B)=\frac{2}{3} \\
P(B)=\frac{5}{9}
\end{gathered}
$$

$$
\mathrm{A} \text { and } \mathrm{B} \text { are independent so } P(A \cap B)=P(A) \times P(B)=\frac{1}{4} \times \frac{5}{9}=\frac{5}{36}
$$

Simplify

From Venn Diagram, $P\left(A^{\prime} \cap B\right)=\frac{5}{12}$

$$
P\left(B^{\prime} \mid A\right)=\frac{P\left(B^{\prime} \cap A\right)}{P(A)}=\frac{\frac{1}{9}}{\frac{1}{9}+\frac{5}{36}}=\frac{\frac{1}{9}}{\frac{1}{4}}=\frac{4}{9}
$$

38)

39)

Let's use some formulae

Independent: $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})$
$\frac{1}{24}=P(A) P(B)$

Addition formula: $P(A \cup B)=P(A)+P(B)-P(A \cap B)$ can be updated as
$\frac{3}{8}=P(A)+P(B)-\frac{1}{24}$
Solve simultaneously
We can say $P(A)=x$ and $P(B)=y$ if you prefer
$\frac{1}{24}=x y$
$x=\frac{1}{24 y}$
$\frac{3}{8}=x+y-\frac{1}{24}$
$x+y=\frac{5}{12}$
$\frac{1}{24 y}+y=\frac{5}{12}$
$1+24 y^{2}=10 y$
$24 y^{2}-10 y+1=0$
$y=\frac{1}{4}, \frac{1}{6} \Rightarrow x=\frac{1}{6}, \frac{1}{4}$
So $P(A)=\frac{1}{4}$ and $P(B)=\frac{1}{6}$ or vice versa
40)

A and B are mutually exclusive so $P(A \cap B)=0$
We can update the addition formula with this:

$$
\begin{gathered}
P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
0.4=0.2+P(B)-0 \\
P(B)=0.4-0.2=0.2
\end{gathered}
$$

We can use the addition formula again:

$$
\begin{gathered}
P(B \cup C)=P(B)+P(C)-P(B \cap C) \\
0.34=0.2+0.3-P(B \cap C) \\
P(B \cap C)=0.2+0.3-0.34=0.16
\end{gathered}
$$

ii. B and C are independent if $P(B \mid C)=P(B)$ and $P(C \mid B)=P(C)$

$$
P(B \mid C)=\frac{P(B \cap C)}{P(C)}=\frac{0.16}{0.2}=0.8
$$

So $P(B \mid C) \neq P(B)$ since $0.2 \neq 0.8$
41)
i.
$P(B)=p$ so $P(A)=3 p$

$$
\mathrm{A} \text { and } \mathrm{B} \text { are mutually exclusive so } P(A \cap B)=0
$$

ii.

Sum of probabilities must be between 0 and 1

$$
\begin{gathered}
0 \leq 3 p+p \leq 1 \\
0 \leq 4 p \leq 1 \\
0 \leq p \leq \frac{1}{4} \\
0 \leq P(B) \leq \frac{1}{4}
\end{gathered}
$$

iii.

$$
\begin{gathered}
\text { If } \mathrm{C} \text { and } \mathrm{D} \text { are independent, } P(C \cap D)=P(C) P(D) \\
P(C \mid D)=3 P(C) \\
\qquad P(C \mid D)=\frac{P(C \cap D)}{P(D)}=3 P(C) \\
\text { So } P(C \cap D)=3 P(C) P(D) \neq P(C) P(D) \text { since } P(C) \neq 0 \\
\text { So } \mathrm{C} \text { and } \mathrm{D} \text { are not independent. }
\end{gathered}
$$

iv.

$$
\begin{gathered}
P(C \cap D)=\frac{1}{2} P(C) \text { and } P\left(C^{\prime} \cap D^{\prime}\right)=\frac{7}{10} \\
\text { Let } P(C)=x \\
\text { So } P(C \cap D)=\frac{1}{2} x \\
P\left(C^{\prime} \cap D^{\prime}\right)=\frac{7}{10} \\
\text { From part(ii) } P(D)=\frac{P(C \cap D)}{3 P(C)}=\frac{\frac{1}{2} x}{3 x}=\frac{1}{6}
\end{gathered}
$$

Venn diagram:

4 Diamond

4.1 With Set Notation

4.2 With Algebra

42)

We can form 3 equations and have 3 unknowns so we can find each unknown
A and B mutually exclusive: $x+0=0$
A and \mathbf{C} independent: $z=(0.10+y+z)(z+x+0.39)$
Probabilities add to make 1: $0.1+z+y+0.3+x+0.39+0.06=1$

$$
\begin{gathered}
z+y+0.85=1 \\
z+y=0.15
\end{gathered}
$$

$$
\begin{gathered}
z=(0.10+y+z)(z+x+0.39) \text { becomes } \\
z=(0.10+0.15)(z+0+0.39) \\
z=0.25(z+0.39) \\
z=0.25 z+0.0975 \\
0.75 z=0.0975 \\
z=0.13 \\
0.13+y=0.15 \\
y=0.02 \\
\\
x=0, y=0.02, z=0.13
\end{gathered}
$$

43)

i.

Pairs of mutually exclusive events are where there is no overlap on the Venn diagram:
A and C
B and D
C and D
ii.

$$
\begin{gathered}
\mathbf{P}(\mathbf{B})=\mathbf{0 . 4} \\
p+0.07+0.24=0.4 \\
p=0.09
\end{gathered}
$$

iii.

$$
\begin{gathered}
\boldsymbol{P}(\boldsymbol{A} \cap \boldsymbol{B})=\boldsymbol{P}(\boldsymbol{A}) \times \boldsymbol{P}(\boldsymbol{B}) \\
(0.24+0, .16+q) 0.4=0.24 \\
0.24+0.16+q=0.6 \\
q=0.2
\end{gathered}
$$

iv.

$$
\begin{gathered}
\boldsymbol{P}\left(\boldsymbol{B}^{\prime} \mid \boldsymbol{C}\right)=\mathbf{0 . 6 4 :} \\
\frac{P\left(B^{\prime} \cap C\right)}{P(C)}=0.64 \\
\frac{r}{p+r}=0.64 \\
\frac{r}{0.09+r}=0.64 \\
r=0.64(0.09+r) \\
r=0.0576+0.64 r \\
r-0.64 r=0.0576 \\
\\
0.36 r=0.0576 \\
r=0.16
\end{gathered}
$$

v. Probabilities add to 1

$0.16+0.24+0.2+0.07+0.09+0.16+s=1$
$s=1-0.92=0.08$
44)

We can form 5 equations, but have 6 unknowns so we could never find each unknown, but that's ok

$$
\mathbf{P}(\mathbf{A})=\mathbf{0 . 2}: a+b=0.2
$$

$$
\mathbf{P}(\mathbf{C})=\mathbf{0 . 3}: b+d+e=0.3
$$

$$
\mathbf{P}(\mathbf{A} \cup \boldsymbol{B})=\mathbf{0 . 4}: a+b+c+d=0.4
$$

$$
a+b+c+d=0.4
$$

$$
0.2+c+d=0.4
$$

$$
c+d=0.2
$$

$$
\begin{gathered}
\mathbf{P}(\mathbf{B} \cup \mathbf{C})=\mathbf{0 . 3 4}: b+c+d+e=0.34 \\
b+c+d+e=0.34 \\
0.3+c=0.34 \\
c=0.04
\end{gathered}
$$

$$
\text { So } c+d=0.2 \text { becomes } 0.04+d=0.2 \Rightarrow d=0.16
$$

Probabilities add the 1: $a+b+c+d+e+f=1$ (we don't need this)

$$
\begin{gathered}
P(B)=c+d=0.2 \\
P(B \cap C)=d=0.16 \\
\\
\text { ii. Are B and } C \text { independent? } \\
P(B)=0.2 \\
P(C)=0.3 \\
P(B \cap C)=0.16 \\
(0.2)(0.3)=0.06 \\
0.06 \neq 0.16 \\
\text { Therefore } P(A \cap B) \neq P(A) P(B) \\
\text { not independent }
\end{gathered}
$$

45)

i. We can form equations based on all the given info

We can form 5 equations and 5 unknowns so we can find each unknown

$$
\begin{gathered}
\mathbf{P}(\mathbf{A})=\mathbf{0 . 5}: r+s=0.5 \\
\mathbf{P}(\mathbf{B})=\mathbf{0 . 6}: s+t+p=0.6 \\
\mathbf{P}(\mathbf{C})=\mathbf{0 . 2 5}: p+q=0.25
\end{gathered}
$$

Events \mathbf{B} and \mathbf{C} are independent : $(s+t+p)(p+q)=p$

$$
\begin{gathered}
(0.6)(0.25) \\
p=0.15
\end{gathered}
$$

$$
\begin{gathered}
\text { So } p+q=0.25 \text { becomes } \\
0.15+q=0.25 \\
q=0.1
\end{gathered}
$$

ii. Probabilities add the 1: $r+s+t+p+0.1+0.08=1$
$r+s+t+p+0.1+0.08=1$

$$
\begin{gathered}
r+0.6+0.1+0.08=1 \\
r=1-0.6-0.1-0.08 \\
r=0.22 \\
\\
\text { iii. } r+s=0.5 \text { becomes } \\
0.22+s=0.5 \\
s=0.5-0.22=0.28 \\
\\
s+t+p=0.6 \text { becomes } \\
0.28+t+0.15=0.6 \\
t=0.6-0.28-0.15 \\
t=0.17
\end{gathered}
$$

iv. $P(A)=0.5$ (given in question)
$P(B)=0.6$ (given in question)

$$
P(A \cap B)=s=0.28
$$

$$
(0.5)(0.6)=0.30
$$

$$
0.28 \neq 0.30
$$

Therefore $P(A \cap B) \neq P(A) P(B)$
Not independent

$$
\mathrm{P}(\mathrm{~B} \mid \mathrm{A} \cup \mathrm{C})=\frac{P(B \cap A \cup C)}{P(A \cup C)}=\frac{s+p}{r+s+p+q}=\frac{0.28+0.15}{0.5+0.25}=0.573
$$

46)

Way 1: Use algebra

We can't fill in anything to the Venn diagram
Let's use the conditional formula;
$P\left(A \mid B^{\prime}\right)=0.6$
$\frac{P\left(A \cap B^{\prime}\right)}{P\left(B^{\prime}\right)}=0.6$
$P(A \cup B)=0.7$
Call $P\left(A \cap B^{\prime}\right)=x, P(A \cap B)=y, P\left(A^{\prime} \cap B\right)=z$ in the Venn diagram

$$
\begin{aligned}
& \frac{P\left(A \cap B^{\prime}\right)}{P\left(B^{\prime}\right)}=\frac{x}{x+0.3}=0.6 \\
& x=0.6 x+0.18 \\
& 0.4 x=0.18 \\
& x=\frac{0.18}{0.4}=0.45
\end{aligned}
$$

Fill this result back into the Venn diagram

Way 2: Without algebra (harder as have to think a bit more)

$$
\begin{aligned}
P\left(A^{\prime} \mid B^{\prime}\right) & =\frac{P\left(A^{\prime} \cap B^{\prime}\right)}{P\left(B^{\prime}\right)} \\
1-P\left(A \mid B^{\prime}\right) & =\frac{P\left(A \prime \cap B^{\prime}\right)}{P\left(B^{\prime}\right)} \\
1-0.6 & =\frac{0.3}{P\left(B^{\prime}\right)} \\
P\left(B^{\prime}\right) & =0.75 \\
P(B) & =0.25
\end{aligned}
$$

OR

$$
\begin{gathered}
P\left(A \mid B^{\prime}\right)=\frac{P\left(A \cap B^{\prime}\right)}{P\left(B^{\prime}\right)} \\
0.6=\frac{P(A \cup B)-P(B)}{P\left(B^{\prime}\right)} \\
0.6=\frac{0.7-P(B)}{1-P(B)} \\
\text { Solve for } P(B) \\
P(B)=0.25
\end{gathered}
$$

Form equation based on knowing that $P(A \cup B)=0.7$
$0.45+y+z=0.7$
$y+z=0.25$
$P(B)=y+z=0.25$
47)

	A	B	Total
Professional	740	380	1120
Skilled	275	90	365
Elementary	260	80	340
Total	1275	550	1825

i. $\quad P($ employee is skilled $)=\frac{365}{1825}=\frac{1}{5}$
ii. $\quad P$ (lives in area B and is not a professional $)=\frac{90+80}{1825}=\frac{34}{365}$
iii. 65% of professional employees in both area A and B work from home

$$
0.65 \times 1120=728
$$

40% of skilled employees in both area A and B work from home

$$
0.40 \times 365=146
$$

5% of elementary employees in both area A and B work from home

$$
0.05 \times 340=17
$$

so total working from home $=728+146+17=891$

Build equations to find x, y and z

- 740 in A are professional: $y+z=740$ (1)
- 891 work from home: $x+123+247+y=891$

$$
x+y=521
$$

- 728 of professional work from home: $247+y=728$ so $y=481$ (2)

Sub y into (2): $x+481=521$ so $x=40$

Sub y into (1): $481+z=790$ so $z=259$

Total $=1825$ so $1825-40-123-412-481-247-259-133=130$

iv. Find $P\left(R^{\prime} \cap F\right)=\frac{247+133}{1825}=\frac{380}{1825}=\frac{76}{365}$
v. Find $P\left((H \cup R)^{\prime}\right)=\frac{133+130}{1825}=\frac{263}{1825}$
vi. Find $P(F \mid H)=\frac{F \cap H}{H}=\frac{247+481}{40+123+481+247}=\frac{728}{891}$
48)

$$
\begin{gathered}
x+26=30 \\
x=4
\end{gathered}
$$

Hence the number of people who play all three sports is 4
ii.

Now that we know x we can fill out the rest of the diagram

$$
P\left(H^{\prime} \mid S\right)=\frac{P\left(H^{\prime} \cap S\right)}{P(S)}=\frac{7+3}{7+3+4+4}=\frac{10}{18}=\frac{5}{9}
$$

i. Think back to when you first learnt probability and you were taking beads out of a bag without replacement. What happens in the first selection affected the numbers for what happens in the next selection. We care whether the first student played hockey or not as this will affect the numbers when selecting for the hockey. So, it should make sense that there are 2 cases you need to consider here. Either the first person plays hocket as well as squash, or the first person doesn't don't play hockey.

$$
P(H \mid S) \times P(H)+P\left(H^{\prime} \mid S\right) \times P(H)
$$

Where the first even in each is the first student and the second event in each is the second student

choose all the options out of the red Spanish circle for the first case, but we take them in cases (green and purple) since they affect Hockey differently

$$
\left(\frac{4+4}{18}\right)\left(\frac{18}{29}\right)+\left(\frac{7+3}{18}\right)\left(\frac{19}{29}\right)=\frac{167}{261}
$$

49)

We choose all the options out of the red History circle for the first case, but we have to take them in cases since they affect Geography differently

$$
\left(\frac{7+8}{100} \times \frac{25+12}{99}\right)+\left(\frac{25}{100} \times \frac{24+12}{99}\right)+\left(\frac{3}{100} \times \frac{25+12}{99}\right)=\frac{87}{550}
$$

50)

$$
\begin{aligned}
& \text { USE: } \boldsymbol{P}(\boldsymbol{X} \cup \boldsymbol{Y})=\boldsymbol{P}(\boldsymbol{X})+\boldsymbol{P}(\boldsymbol{Y})-\boldsymbol{P}(\boldsymbol{X} \cap \boldsymbol{Y}) \text { and events are independent so } \boldsymbol{P}(\boldsymbol{X} \cap \boldsymbol{Y})= \\
& \boldsymbol{P}(\boldsymbol{X}) \times \boldsymbol{P}(\boldsymbol{Y}) \\
& \text { i. } P(A \cap B \cap C)=P((A \cap B) \cap C)=P(A \cap B) \times P(C)=(P(A) \times P(B)) \times P(C)=(x y) z=x y z \\
& \text { ii. } P(A \cup B \cup C)=P((A \cup B) \cup C) \\
& =P(A \cup B)+P(C)-P((A \cup B) \cap C) \\
& =(P(A)+P(B)-P(A \cap B))+P(C)-P(A \cup B) \times P(C) \\
& =P(A)+P(B)-P(A \cap B)+P(C)-(P(A)+P(B)-P(A \cap B)) \times P(C) \\
& =x+y-x y+z-(x+y-x y) z \\
& =x+y-x y+z-x z-y z+x y z \\
& \text { iii. } P\left(\left(A \cup B^{\prime}\right) \cap C\right)=P(A \cup B) \times P(C) \\
& =(P(A)+P(B)-P(A \cap B)) \times P(C) \\
& =(x+y-x y) z \\
& =x z+y z-x y z
\end{aligned}
$$

4.3 With Conditional - Bayes Theorem

51)

52)

$$
\begin{aligned}
& \text { Label events: } \\
& \mathrm{A}=\text { UN air flight } \\
& \mathrm{B}=\text { IS Air flight } \\
& \mathrm{L}=\text { luggage lost } \\
& \text { We know; } P(A)=\frac{70}{70+65}=\frac{70}{135} \text { and } P(B)=\frac{65}{135} \text { and } P(L \mid A)=0.18, P(L \mid B)=0.23 \\
& \text { Using Bayes' theorem; } P(B \mid L)=\frac{P(L \mid B) \times P(B)}{P(L \mid B) \times P(B)+P(L \mid A) \times P(A)}=\frac{0.23 \times \frac{65}{135}}{0.23 \times \frac{65}{135}+0.18 \times \frac{70}{135}} \approx 0.543
\end{aligned}
$$

53)

i. Let percentage population vaccinated $=p$, which makes percentage population not vaccinated $=1-p$
$P($ catching virus $)=$ percentage population vaccinated $\times 0.1+$ percentage population not vaccinated $\times 0.3$
So $0.22=p \times 0.1+(1-p) \times 0.3$

$$
\begin{gathered}
0.22=0.1 p+0.3-0.3 p \\
0.2 p=0.3-0.22=0.08 \\
p=\frac{0.08}{0.2}=0.4=40 \%
\end{gathered}
$$

So, percentage of the population vaccinated $=40 \%$
ii. Let events be:
$A=$ person is vaccinated
$B=$ person is not vaccinated
$\mathrm{X}=$ person catches virus
We know $P(A)=0.4$ and $P(B)=1-0.4=0.6$
$P(X \mid A)=0.1, P(X \mid B)=0.3$
Bayes theorem;

$$
P(A \mid X)=\frac{P(X \mid A) \times P(A)}{P(X \mid A) \times P(A)+P(X \mid B) \times P(B)}=\frac{0.1 \times 0.4}{0.1 \times 0.4+0.3 \times 0.6}=\frac{0.04}{0.22}=\frac{2}{11}
$$

54)
```
Label events:
A = Brian Air flight
B = Easy Flights flight
L = luggage lost
```

There are 3 times as many Brian Air flights as Easy Flights flights so $P(A)=\frac{3}{4}$ and $P(B)=\frac{1}{4}$
We also know: $P(L \mid A)=\frac{1}{6}$ and $P(L \mid B)=\frac{1}{8}$
Using Bayes' theorem;

$$
P(A \mid L)=\frac{P(L \mid A) \times P(A)}{P(L \mid A) \times P(A)+P(L \mid B) \times P(B)}=\frac{\frac{1}{6} \times \frac{3}{4}}{\frac{1}{6} \times \frac{3}{4}+\frac{1}{8} \times \frac{1}{4}}=\frac{\frac{1}{8}}{\frac{5}{32}}=\frac{4}{5}
$$

55)
```
Start by labelling events:
A = computer is from Factory A
B = computer is from Factory B
F = computer is faulty
Factory A produces double the number of batteries than Factory B so P(A)=\frac{2}{3}}\mathrm{ and }P(B)=\frac{1}{3
We know: P(F|A)=0.15,P(F|B)=0.2
```

Using Bayes' theorem; $P(A \mid F)=\frac{P(F \mid A) \times P(A)}{P(F \mid A) \times P(A)+P(F \mid B) \times P(B)}=\frac{0.15 \times \frac{2}{3}}{0.15 \times \frac{2}{3}+0.2 \times \frac{1}{3}}=\frac{\frac{1}{10}}{\frac{1}{10}+\frac{1}{15}}=\frac{3}{5}$
56)

$$
\begin{aligned}
P(F) & =0.9 \\
P(M) & =0.1 \\
P(R \mid M) & =0.95 \\
P(R \mid F) & =0.08
\end{aligned}
$$

Use Bayes' theorem:

$$
P(M \mid R)=\frac{P(R \mid M) \times P(M)}{P(R \mid M) \times P(M)+P(R \mid F) \times P(F)}=\frac{0.95 \times 0.1}{0.95 \times 0.1+0.08 \times 0.9}=\frac{95}{167} \approx 0.57
$$

57)

Label events:
$P=$ mammogram result is positive
$B=$ tumor is benign
$M=$ tumor is malignant

We know: $P(M)=0.01, P(B)=0.99$ and $P(P \mid M)=0.8, P(P \mid B)=0.1$
Bayes' theorem:

$$
P(M \mid P)=\frac{P(P \mid M) \times P(M)}{P(P \mid M) \times P(M)+P(P \mid B) \times P(B)}=\frac{0.8 \times 0.01}{0.8 \times 0.01+0.1 \times 0.99}=\frac{0.008}{0.107} \approx 0.075=7.5 \%
$$

7.5% is very far away from 75% so, no, do not agree.

